Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
FEBS J ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525648

RESUMO

In recent years, a few asparaginyl endopeptidases (AEPs) from certain higher plants have been identified as efficient peptide ligases with wide applications in protein labeling and cyclic peptide synthesis. Recently, we developed a NanoLuc Binary Technology (NanoBiT)-based peptide ligase activity assay to identify more AEP-type peptide ligases. Herein, we screened 61 bamboo species from 16 genera using this assay and detected AEP-type peptide ligase activity in the crude extract of all tested bamboo leaves. From a popular bamboo species, Bambusa multiplex, we identified a full-length AEP-type peptide ligase candidate (BmAEP1) via transcriptomic sequencing. After its zymogen was overexpressed in Escherichia coli and self-activated in vitro, BmAEP1 displayed high peptide ligase activity, but with considerable hydrolytic activity. After site-directed mutagenesis of its ligase activity determinants, the mutant zymogen of [G238V]BmAEP1 was normally overexpressed in E. coli, but failed to activate itself. To resolve this problem, we developed a novel protease-assisted activation approach in which trypsin was used to cleave the mutant zymogen and was then conveniently removed via ion-exchange chromatography. After the noncovalently bound cap domain was dissociated from the catalytic core domain under acidic conditions, the recombinant [G238V]BmAEP1 displayed high peptide ligase activity with much lower hydrolytic activity and could efficiently catalyze inter-molecular protein ligation and intramolecular peptide cyclization. Thus, the engineered bamboo-derived peptide ligase represents a novel tool for protein labeling and cyclic peptide synthesis.

2.
Biochem Biophys Res Commun ; 706: 149766, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484568

RESUMO

Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based ß-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Receptores de Lisoesfingolipídeo , Esfingosina/análogos & derivados , Animais , Humanos , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Ligantes , Células HEK293 , Lisofosfolipídeos/farmacologia
3.
Environ Sci Pollut Res Int ; 31(11): 16131-16149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319418

RESUMO

Landfilling is one of the predominant methods of municipal solid waste (MSW) disposal worldwide, while the generation of leachate, a kind of toxic wastewater, is among the primary factors behind landfill instability and environmental contamination problems. Precise prediction of leachate production is crucial to landfill safety evaluation and design. This paper presents a comprehensive review of methods for predicting leachate production from MSW landfills. Firstly, compositional characteristics of MSW and leachate generation mechanism are analysed. Factors influencing leachate production are summarised based on the generation mechanism, including the components of MSW, climatic conditions, landfill structure, and environmental factors. Then, we classified the existing methods for predicting leachate production into four categories: water balance formula, water balance model, empirical formula, and artificial intelligence model methods. Advantages, disadvantages, and applicability of different leachate production prediction methods are compared and analysed. Furthermore, limitations in the existing leachate production prediction methods for MSW landfills and scope for future research are discussed.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Inteligência Artificial , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Água , Poluentes Químicos da Água/análise
4.
Front Pharmacol ; 15: 1346383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405671

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung tumor; however, we lack effective early detection indicators and therapeutic targets. Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) is vital to initiate protein synthesis, acting as a scaffolding protein for the eukaryotic protein translation initiation factor complex, EIF4F, which regulates protein synthesis together with EIF4A, EIF4E, and other translation initiation factors. However, EIF4G1's function in NSCLC cancer is unclear. Herein, transcriptome sequencing showed that knockdown of EIF4G1 in H1299 NSCLC cells upregulated the expression of various inflammation-related factors. Inflammatory cytokines were also significantly overexpressed in NSCLC tumor tissues, among which CXCL8 (encoding C-X-C motif chemokine ligand 8) showed the most significant changes in both in the transcriptome sequencing data and tumor tissues. We revealed that EIF4G1 regulates the protein level of TNF receptor superfamily member 10a (TNFRSF10A) resulting in activation of the mitogen activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) pathways, which induces CXCL8 secretion, leading to targeted chemotaxis of immune cells. We verified that H1299 cells with EIF4G1 knockdown showed increased chemotaxis compared with the control group and promoted increased chemotaxis of macrophages. These data suggested that EIF4G1 is an important molecule in the inflammatory response of cancer tissues in NSCLC.

5.
Amino Acids ; 55(11): 1557-1562, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689599

RESUMO

Our recent study confirmed that the mature neuropeptide FAM237A, also known as neurosecretory protein GL (NPGL), is an efficient agonist for GPR83. The paralog FAM237B was previously reported as a weak agonist for GPR83. In the present study, we prepared mature human FAM237B via an intein-fusion approach and demonstrated that it could cause a significant activation effect at the nanomolar range (1‒10 nM) in a NanoBiT-based ß-arrestin recruitment assay. Thus, FAM237B appears to be another endogenous agonist for GPR83 and future in vivo studies will be required to confirm this.


Assuntos
Neuropeptídeos , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Biochem Biophys Res Commun ; 679: 110-115, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37677979

RESUMO

The peptide hormone ghrelin (an agonist) and LEAP2 (an antagonist) play important functions in energy metabolism via their receptor GHSR, an A-class G protein-coupled receptor. Ghrelin, LEAP2, and GHSR are widely present from fishes to mammals. However, our recent study suggested that fish GHSRs have different binding properties to ghrelin: a GHSR from the lobe-finned fish Latimeria chalumnae (coelacanth) is efficiently activated by ghrelin, but GHSRs from the ray-finned fish Danio rerio (zebrafish) and Larimichthys crocea (large yellow croaker) have lost binding to ghrelin. Do fish GHSRs use another peptide as their agonist? In the present study we tested to two fish motilins from D. rerio and L. chalumnae because motilin is distantly related to ghrelin. In ligand binding and activation assays, the fish GHSRs from D. rerio and L. crocea displayed no detectable or very low binding to all tested motilins; however, the fish GHSR from L. chalumnae bound to its motilin with high affinity and was efficiently activated by it. Therefore, it seemed that motilin is not a ligand for GHSR in the ray-finned fish D. rerio and L. crocea, but is an efficient agonist for GHSR in the lobe-finned fish L. chalumnae, one of the closest fish relatives of tetrapods. The results of present study suggested that GHSR might have two efficient agonists, ghrelin and motilin, in ancient fishes; however, this feature might be only preserved in some extant fishes with ancient evolutionary origins.

7.
Hum Cell ; 36(3): 1099-1107, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36897548

RESUMO

Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) is highly expressed in many cancers and affects their occurrence and development. However, the effect of EIF4G1 on the prognosis, biological function and the relevant mechanism in lung squamous cell carcinoma (LSCC) is unclear. Through clinical cases, Cox's proportional hazard model and Kaplan-Meier plotter survival analysis, we find the expression levels of EIF4G1 are dependent on age and clinical stage, high expression of EIF4G1 could be used to predict the overall survival of LSCC patients. LSCC cell line NCI-H1703, NCI-H226 and SK-MES-1infected with EIF4G1 siRNA are used to detect the function of EIF4G1 with cell proliferation and tumorigenesis in vivo and vitro. The data show that EIF4G1 promotes tumor cell proliferation and the G1/S transition of cell cycle in LSCC, then the biological function of LSCC is effected by the AKT/mTOR pathway. Above all, these results have demonstrated that EIF4G1 promotes LSCC cell proliferation and may represent an indicator of prognosis in LSCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células/genética , Neoplasias Pulmonares/patologia , Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo
8.
FEBS J ; 290(13): 3461-3479, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853120

RESUMO

G protein-coupled receptor 83 (GPR83) is primarily expressed in the brain and is implicated in the regulation of energy metabolism and some anxiety-related behaviours. Recently, the PCSK1N/proSAAS-derived peptide PEN, the procholecystokinin-derived peptide proCCK56-63, and family with sequence similarity 237 member A (FAM237A) were all reported as efficient agonists of GPR83. However, these results have not yet been reproduced by other laboratories and thus GPR83 is still officially an orphan receptor. The peptide PEN and proCCK56-63 share sequence similarity; however, they are completely different from FAM237A. To identify its actual ligand(s), in the present study we developed NanoLuc Binary Technology (NanoBiT)-based ligand-binding assay, fluorescent ligand-based visualization, and NanoBiT-based ß-arrestin recruitment assay for human GPR83. Using these assays, we demonstrated that mature human FAM237A could bind to GPR83 with nanomolar range affinity, and could activate this receptor and induce its internalization with nanomolar range efficiency in transfected human embryonic kidney 293T cells. However, we did not detect any interaction of PEN and proCCK56-63 with GPR83 using these assays. Thus, our results confirmed that FAM237A is an efficient agonist of GPR83, but did not support PEN and proCCK56-63 as ligands of this receptor. Clarification of their pairing paves the way for further functional studies of the brain-specific receptor GPR83 and the so far rarely studied neuropeptide FAM237A in the future.


Assuntos
Neuropeptídeos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Encéfalo/metabolismo , Metabolismo Energético
9.
Biochimie ; 209: 10-19, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36669723

RESUMO

Recently, liver-expressed antimicrobial peptide 2 (LEAP2) was identified as an endogenous antagonist and an inverse agonist of the ghrelin receptor GHSR. However, its functions in lower vertebrates are not well understood. Our recent study demonstrated that both LEAP2 and ghrelin are functional towards a fish GHSR from Latimeria chalumnae, an extant coelacanth believed to be one of the closest ancestors of tetrapods. However, amino acid sequence alignment identified that the 6.58 position (Ballesteros-Weinstein numbering system) of most fish GHSRs are not occupied by an aromatic Phe residue, which is absolutely conserved in all known GHSRs from amphibians to mammals, and is responsible for human GHSR binding to its agonist, ghrelin. To test whether these unusual fish receptors are functional, we studied the ligand binding properties of three representative fish GHSRs, two from Danio rerio (zebrafish) and one from Larimichthys crocea (large yellow croaker). After overexpression in human embryonic kidney 293T cells, the three fish GHSRs retained normal binding to all tested LEAP2s, except for a second LEAP2 from L. crocea. However, they displayed almost no binding to all chemically synthesized n-octanoylated ghrelins, despite these ghrelins all retaining normal function towards human and coelacanth GHSRs. Thus, it seems that LEAP2 is a more conserved ligand than ghrelin towards fish GHSRs. Our results not only provided new insights into the interaction mechanism of GHSRs with LEAP2s and ghrelins, but also shed new light on the functions of LEAP2 and ghrelin in different fish species.


Assuntos
Grelina , Peixe-Zebra , Animais , Humanos , Grelina/metabolismo , Ligantes , Peixe-Zebra/metabolismo , Agonismo Inverso de Drogas , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Mamíferos/metabolismo
10.
Environ Sci Pollut Res Int ; 30(12): 35170-35188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527554

RESUMO

Leachate recharging not only solves the leachate treatment problem but also has tremendous environmental and engineering benefits. In this study, a recharge model was developed based on consideration of the inhomogeneous characteristics of the pile and the degree of clogging of the leachate collection and removal system (LCRs), and a design diagram of the maximum injection pressure Ps and the minimum setback distance ds was given. The following conclusions are obtained: the rate of diffusion in the horizontal and burial depth directions depends on anisotropy coefficient A, and the rate of development of the blocked water level on the LCRs depends on the degree of blockage h1. The development rate of the region affected by the recharging is low at the beginning of the recharging and increases rapidly when the moment Tb is reached, which decreases with the injection pressure P, and the degree of blockage h1. The safety factor of slope Fs decreases at a slower rate when the anisotropy coefficient is 0 < A < 1 and 15 < A < 20, and at a faster rate when 1 < A < 15. When the LCRs is blocked, the injection pressure P and anisotropy coefficient A increase the degree of influence on the recharge efficiency and slope stability, and when the blocked water level h1 > 30 m, recharge is not recommended. This model and the vertical well design method can well simulate the recharging process and its effect on the slope stability and provide a reference for the design of vertical wells.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Reatores Biológicos , Anisotropia
11.
Chemosphere ; 313: 137617, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563727

RESUMO

Graphene-based membranes (GBM) will migrate in the soil and enter the groundwater system or plant roots, which will eventually pose potential risks to human beings. The migration mechanism of GBM depends on the interface behavior of complex soil components. Herein, we use molecular dynamics (MD) simulations to probe the interface behavior between GBM and three type minerals (quartz, calcite and kaolinite). Based on the investigation of binding energy, maximum pulling force and barrier energy, the order of the difficulty of GBM adsorption and desorption on the three minerals from small to large is roughly: quartz, calcite and kaolinite respectively. The graphene-oxide (GO), improves the binding energy and energy barrier, making GBM difficult to migrate in soil. Remarkably, a larger GBM sheet and high velocity external load improve GBM migration in soil to a certain extent. These investigations give the dynamic information on the GBM/mineral interaction and provide nanoscale insights into the migration mechanisms of GBM in soil.


Assuntos
Grafite , Humanos , Grafite/química , Solo/química , Caulim/química , Quartzo , Minerais/química , Carbonato de Cálcio/química , Adsorção
12.
Arthritis Res Ther ; 24(1): 234, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253807

RESUMO

BACKGROUND: Abnormal proliferation of fibroblast-like synoviocytes (FLSs) in the synovial lining layer is the primary cause of synovial hyperplasia and joint destruction in rheumatoid arthritis (RA). Currently, the relationship between metabolic abnormalities and FLS proliferation is a new focus of investigation. However, little is known regarding the relationship between amino acid metabolism and RA. METHODS: The concentrations of amino acids and cytokines in the synovial fluid of RA (n = 9) and osteoarthritis (OA, n = 9) were detected by LC-MS/MS and CBA assay, respectively. The mRNA and protein expression of cationic amino acid transporter-1 (CAT-1) were determined in FLSs isolated from RA and OA patients by real-time PCR and western blotting. MTT assay, cell cycle, apoptosis, invasion, and cytokine secretion were determined in FLSs knocked down of CAT-1 using siRNA or treated with D-arginine under normoxic and hypoxic culture conditions. A mouse collagen-induced arthritis (CIA) model was applied to test the therapeutic potential of blocking the uptake of L-arginine in vivo. RESULTS: L-rginine was upregulated in the synovial fluid of RA patients and was positively correlated with the elevation of the cytokines IL-1ß, IL-6, and IL-8. Further examination demonstrated that CAT-1 was the primary transporter for L-arginine and was overexpressed on RA FLSs compared to OA FLSs. Moreover, knockdown of CAT-1 using siRNA or inhibition of L-arginine uptake using D-arginine significantly suppressed L-arginine metabolism, cell proliferation, migration, and cytokine secretion in RA FLSs under normoxic and hypoxic culture conditions in vitro but increased cell apoptosis in a dose-dependent manner. Meanwhile, in vivo assays revealed that an L-arginine-free diet or blocking the uptake of L-arginine using D-arginine suppressed arthritis progression in CIA mice. CONCLUSION: CAT-1 is upregulated and promotes FLS proliferation by taking up L-arginine, thereby promoting RA progression.


Assuntos
Arginina , Artrite Experimental , Artrite Reumatoide , Transportador 1 de Aminoácidos Catiônicos , Sinoviócitos , Animais , Camundongos , Aminoácidos/metabolismo , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Citocinas/metabolismo , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos Endogâmicos CBA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Espectrometria de Massas em Tandem
13.
ACS Med Chem Lett ; 13(10): 1655-1662, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262400

RESUMO

The orexigenic peptide ghrelin exerts important functions in energy metabolism and has therapeutic potential to treat certain diseases. Native ghrelin carries an essential O-fatty acyl moiety; however, this post-translational modification is susceptible to hydrolysis by certain esterases in circulation, representing a major route of its in vivo inactivation. In the present study, we developed a novel approach to prepare various esterase-resistant ghrelin analogs via photoinduced thiol-ene click chemistry. A recombinant unacylated human ghrelin mutant was reacted with commercially available terminal alkenes; thus, various alkyl moieties were introduced to the side chain of its unique Cys3 residue via a thioether bond. Among 11 S-alkylated ghrelin analogs, analog 11, generated by reacting with 2-methyl-1-octene, not only acquired much higher stability in serum but also retained full activity compared with native human ghrelin. Thus, the present study provided an efficient approach to prepare highly stable and highly active ghrelin analogs with therapeutic potential.

14.
BMC Cancer ; 22(1): 833, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907820

RESUMO

BACKGROUND: The amino acid transporter SLC6A14, which transports 18 of the 20 proteinogenic amino acids, is too low to be detected in healthy normal tissues but is significantly increased in some solid cancers. However, little is known about the roles of SLC6A14 in colorectal cancer (CRC). METHODS: The mRNA and protein levels of SLC6A14 were detected using TCGA database, real-time polymerase chain reaction, western blot, and tissue microarrays, respectively. Amino acids concentration was determined by LC-MS/MS. Cell proliferation and apoptosis were determined using MTT assay and flow cytometry. Transwell invasion assay and wound healing assay were employed to analyze cell migration and invasion. The protein levels of Akt-mTOR signaling pathway and MMPs proteins were detected by western blot. RESULTS: Both of the mRNA and protein levels of SLC6A14 were upregulated in CRC tissues, and the protein levels of SLC6A14 were closely related to the tumor cells differentiation: the higher the expression of SLC6A14 was, the poorer the differentiation of the tumor cells was. Further knockdown SLC6A14 with siRNA or treatment with α-MT in CRC cell lines reduced cell proliferation and migration in vitro and inhibited xenograft tumor growth in vivo. Mechanistically, SLC6A14 was demonstrated to regulate the expression and phosphorylation of Akt-mTOR, which mediates the promoting tumor growth function of SLC6A14. Blockade of SLC6A14 with α-MT inhibited the activation of mTOR signaling. CONCLUSION: SLC6A14 was upregulated in CRC and could promote tumor progression by activating the Akt-mTOR signaling pathway, which may serve as an effective molecular target for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Sistemas de Transporte de Aminoácidos , Aminoácidos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cromatografia Líquida , Neoplasias Colorretais/patologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem
15.
Front Oncol ; 12: 829705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433424

RESUMO

Ubiquitin-specific peptidase 10 (USP10) can sustain cellular functions and regulate cellular processes. It plays an essential role in cancer inhibition or facilitation by reversing ubiquitin-proteasome degradation. Studies have identified USP10 to be involved in tumor progression in various cancers. However, the pan-cancer expression pattern of USP10, its prognostic value, and the association between tumor immune cell infiltration and USP10 expression remain to be discussed and thus comprised the aims of the present study. Based on clinical samples and bioinformatic analyses, high USP10 expression was observed in most cancer tissues except for ovarian cancer. High USP10 expression correlated with pathological stage and node metastasis and predicted poor patient prognosis. In addition, further analyses at the TIMER and GEPIA databases showed that USP10 is involved in the infiltration of multiple immune cells and regulated the infiltration levels of specific immune cell subpopulations, particularly in pancreatic adenocarcinoma (PAAD) and liver hepatocellular carcinoma (LIHC). Importantly, USP10 might influence survival by modulating immune infiltration in patients with PAAD and LIHC. These results identified USP10 as a potential biomarker for pan-cancer prognosis, and in certain cancers, USP10 could identify clinical prognosis linked to tumor immune infiltration.

16.
BMC Med Educ ; 22(1): 265, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410273

RESUMO

BACKGROUND: Aiming at the poor quality of small lectures due to the lack of lecturing skills of the clinical teachers in residency standardized training, the Teaching and Training Department of Shanghai East Hospital set up a continuous improvement project of lecturing skills for the clinical teachers to search for effective ways to improve lecture quality, then the effect was evaluated. METHODS: Based on the ADDIE model of training design, the department conducted the project in accordance with a process of analysis, design, development, implementation and evaluation. A special course "Clinical Teacher Presentation Training" (CTPT) was developed to convey and train the 5 key behaviors in presentation to improving lecture quality of the clinical teachers. Ninety-nine clinical teachers who give lectures to the residents were recruited as subjects for the project. Adopted the model of "intensive training + practice transference" to strengthen lecturing skills, and applied the Kirkpatrick Four Levels to evaluate the effect of the project from multi-role and multi-stage. RESULTS: The training satisfaction of the CTPT course from the subjects reaches 100%. The subjects have a high degree of knowledge acquisition through CTPT and the knowledge of the 5 key behaviors has been actually used in their lectures at the stage of practice transference. Comparing the data before training and after transference, it is found that the average increasing of the subjects' 5 key behavior scores made by teaching secretaries is 14.12 points (14.12%) and that of the subjects' self-efficacy scores is 9.31 points (9.31%); the performance values were modeling based on the scores from different types of evaluators and increased by an average of 12.61 points (12.61%); and the star ratings of the overall performance increased by an average of 1.17 points (23.4%). The results showed statistically difference (P < 0.001). CONCLUSIONS: The project effectively promoted the improvement of the clinical teachers' lecturing skills and the quality of small lectures.


Assuntos
Internato e Residência , China , Competência Clínica , Humanos , Ensino
17.
FEBS J ; 289(17): 5241-5258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239242

RESUMO

In recent years, some peptide ligases have been identified, such as bacterial sortases and certain plant asparaginyl or prolyl endopeptidases. Peptide ligases have wide applications in protein labelling and cyclic peptide synthesis. To characterize various known peptide ligases or identify new ones, we propose a general bioluminescent activity assay via the genetic fusion of a recognition motif of peptide ligase(s) to the C-terminus of an inactive large NanoLuc fragment (LgBiT) and the chemical introduction of a nucleophilic motif preferred by the peptide ligase(s) to the N-terminus of the low-affinity SmBiT complementation tag. After the inactive ligation version LgBiT protein was ligated with the low-affinity ligation version SmBiT tag by the expected peptide ligase(s), its luciferase activity would be restored and could be quantified sensitively according to the measured bioluminescence. In the present study, we first validated the bioluminescent activity assay using bacterial sortase A and plant-derived butelase-1. Subsequently, we screened novel peptide ligases from crude extracts of selected plants using two LgBiT-SmBiT ligation pairs. Among 80 common higher plants, we identified that five of them likely express asparaginyl endopeptidase-type peptide ligase and four of them likely express prolyl endopeptidase-type peptide ligase, suggesting that peptide ligases are not so rare in higher plants and more of them await discovery. The present bioluminescent activity assay is ultrasensitive, convenient for use, and resistant to protease interference, and thus would have wide applications for characterizing known peptide ligases or screening new ones from various sources in future studies.


Assuntos
Peptídeo Sintases , Peptídeos Cíclicos , Ligases/química , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Peptídeos Cíclicos/química , Plantas/metabolismo
18.
Amino Acids ; 53(6): 939-949, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33966114

RESUMO

Recent studies have demonstrated that liver-expressed antimicrobial peptide 2 (LEAP2) antagonizes the ghrelin receptor GHSR1a in mammals. However, its antagonistic function in lower vertebrates has not yet been tested. LEAP2 orthologs have been identified from a variety of fish species; however, previous studies all focused on their antimicrobial activity. To test whether LEAP2 functions as a GHSR1a antagonist in the lowest vertebrates, we studied the antagonism of a fish LEAP2 from Latimeria chalumnae, an extant coelacanth that is one of the closest living fish relatives of tetrapods. Using binding assays, we demonstrated that the coelacanth LEAP2 and ghrelin bound to the coelacanth GHSR1a with IC50 values in the nanomolar range. Using activation assays, we demonstrated that the coelacanth ghrelin activated the coelacanth GHSR1a with an EC50 value in the nanomolar range, and this activation effect was efficiently antagonized by a nanomolar range of the coelacanth LEAP2. In addition, we also showed that the human LEAP2 and ghrelin were as effective as their coelacanth orthologs towards the coelacanth GHSR1a; however, the coelacanth peptides had moderately lower activity towards the human GHSR1a. Thus, LEAP2 serves as an endogenous antagonist of the ghrelin receptor GHSR1a in coelacanth and the ghrelin-LEAP2-GHSR1a system has evolved slowly since its emergence in ancient fish.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Evolução Molecular , Proteínas de Peixes , Peixes , Receptores de Grelina , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Células HEK293 , Humanos , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
19.
Arch Biochem Biophys ; 704: 108872, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857472

RESUMO

The gastric peptide ghrelin has important functions in energy metabolism and cellular homeostasis by activating growth hormone secretagogue receptor type 1a (GHSR1a). The N-terminal residues of ghrelin orthologs from all vertebrates are quite conserved; however, in orthologs from Cavia porcellus and Phyllostomus discolor, Ser2 and Leu5 are replaced by a smaller Ala and a positively charged Arg, respectively. In the present study, we first demonstrated that the hydrophobic Leu5 is essential for the function of human ghrelin, because Ala replacement caused an approximately 100-fold decrease in activity. However, replacement of Leu5 by an Arg residue caused much less disruption; further replacement of Ser2 by Ala almost restored full activity, although the [S2A] mutation itself showed slight detriments, implying that the positively charged Arg5 in the [S2A,L5R] mutant might form alternative interactions with certain receptor residues to compensate for the loss of the essential Leu5. To identify the responsible receptor residues, we screened GHSR1a mutants in which all conserved negatively charged residues in the extracellular regions and all aromatic residues in the ligand-binding pocket were mutated separately. According to the decrease in selectivity of the mutant receptors towards [S2A,L5R]ghrelin, we deduced that the positively charged Arg5 of the ghrelin mutant primarily interacts with the essential aromatic Phe286 at the extracellular end of the sixth transmembrane domain of GHSR1a by forming cation-π and π-π interactions. The present study provided new insights into the binding mechanism of ghrelin with its receptor, and thus would facilitate the design of novel ligands for GHSR1a.


Assuntos
Grelina/química , Receptores de Grelina/química , Animais , Quirópteros , Grelina/genética , Grelina/metabolismo , Cobaias , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
20.
J Cell Mol Med ; 25(6): 2994-3005, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33523588

RESUMO

Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), as the key component of the transcription initiation factor complex EIF4F, is significantly upregulated in multiple solid tumours, including lung cancer. However, the function and mechanism of EIF4G1 in the regulation of non-small-cell lung cancer (NSCLC) remain unclear. Here, using the clinical samples and the comprehensive survival analysis platforms Kaplan-Meier plotter, we observed aberrant upregulation of EIF4G1 in NSCLC tissues; furthermore, high expression of EIF4G1 showed association with low differentiation of lung cancer cells and poor overall survival in NSCLC patients. Non-small-cell lung cancer cell line A549 and H1703 stably infected with EIF4G1 shRNA were used to determine the function of EIF4G1 in regulating cell proliferation and tumorigenesis in vitro and in vivo. The results demonstrated that EIF4G1 promoted the G1/S transition of the cell cycle and tumour cell proliferation in non-small cell lung cancer. Mechanistically, EIF4G1 was found to regulate the expression and phosphorylation of mTOR (Ser2448), which mediates the tumorigenesis-promoting function of EIF4G1. The inhibition of mTOR attenuated the EIF4G1-induced development and progression of tumours. These findings demonstrated that EIF4G1 is a new potential molecular target for the clinical treatment of non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...